Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development.

نویسندگان

  • Gertrud Wiedemann
  • Corinna Hermsen
  • Michael Melzer
  • Annette Büttner-Mainik
  • Heinz Rennenberg
  • Ralf Reski
  • Stanislav Kopriva
چکیده

A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens.

To date, the function of MADS-domain transcription factors in non-seed plants remains largely elusive, although a number of genes have been isolated and characterized from a variety of species. In our study we analyzed PPM2, a classical MIKC-type MADS-box gene from the moss Physcomitrella patens, taking advantage of the unique technical properties Physcomitrella offers in terms of efficient hom...

متن کامل

Plasma Membrane-Targeted PIN Proteins Drive Shoot Development in a Moss

BACKGROUND Plant body plans arise by the activity of meristematic growing tips during development and radiated independently in the gametophyte (n) and sporophyte (2n) stages of the life cycle during evolution. Although auxin and its intercellular transport by PIN family efflux carriers are primary regulators of sporophytic shoot development in flowering plants, the extent of conservation in PI...

متن کامل

MADS about MOSS.

Classic MIKC-type MADS-box genes (MIKC(c)) play diverse and crucial roles in angiosperm development, the most studied and best understood of which is the specification of floral organ identities. To shed light on how the flower evolved, phylogenetic and functional analyses of genes involved in its ontogeny, such as the MIKC(c) genes, must be undertaken in as broad a selection as possible of pla...

متن کامل

Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant

Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morpholog...

متن کامل

Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens.

Auxin-induced gene expression is described for a variety of different genes including the SAUR-, Aux/IAA- and GH3-families, members of which have been found in seed plants. The precise function of GH3-like proteins in plant development is not well characterised yet. Mutant analysis in Arabidopsis thaliana indicates a possible role for GH3-like proteins in connecting auxin and light signal trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 584 11  شماره 

صفحات  -

تاریخ انتشار 2010